Accuracy Round

LMT Spring 2024
May 4, 2024

1. [6] Compute

$$
\binom{2 \cdot 0 \cdot 2+4!}{2^{0}-2+4}
$$

where $\binom{m}{n}=\frac{m!}{n!(m-n)!}$.
2. [6] Derek rolls two fair 6-sided dice. Given that he rolled at least one even number, find the probability the sum of his rolls is an even number but not a multiple of 4 .
3. [8] Consider equilateral triangle $P O V$ and square $B E N Y$ centered at O, both with side length 4 . Find the area of the intersection of the two polygons, given that $B E$ is parallel to $P O$.
4. [8] Find the least positive integer with strictly more 2-digit factors than 1-digit factors.
5. [10] In rectangle $A B C D$ let $A C=4$ and $\angle A C D=15^{\circ}$. Let G be the centroid of $A B C$ and O be the intersection of $A C$ and $B D$. Let point E satisfy that $D E \| A C$ and lie on the circumcircle of $A B C$. Find the area of $G E O$.
6. [10] The unique real solution to $x^{3}=9 x+14$ can be expressed as $\sqrt[3]{m+\sqrt{n}}+\sqrt[3]{m-\sqrt{n}}$ for positive integers m and n. What is $m+n$?
7. [12] Six people numbered $1,2, \ldots, 6$ are randomly arranged in a circle. Each person begins with exactly one coin. Starting with person $k=1$ and ending with person $k=5$, the person numbered k gives all of the coins in their possession to the person immediately clockwise. After this process is over, compute the expected number of coins in person 6 's possession.
8. [12] Find the number of ordered pairs (m, n) of positive integers such that $2 \leq m, n \leq 100$ and

$$
n!\equiv 30(n-1) \quad(\bmod m!)
$$

9. [14] Consider isosceles triangle $A B C$ with $\angle A=72^{\circ}$ and $A B=A C$. Let D be a point on $(A B C)$ and denote by I_{1} and I_{2} the incenters of $A B D$ and $A C D$, respectively. Let points E and F be the intersections of rays $\overrightarrow{D I_{1}}$ and $\overrightarrow{D I_{2}}$ with minor $\operatorname{arcs} A B$ and $A C$, respectively. Given that $\triangle A B C$ has inradius 5, find the length of the locus of the incenter of $\triangle D E F$ as D varies along minor arc $B C$. Express your answer in simplest form.
10. [14] Derek takes a random walk in the $x y$-plane. He starts at the origin and when he takes a step, he moves 1 unit in each of the four directions with equal probability. Let (m, n) be the point that Derek reaches after 100 steps. Compute the expected value of $(m n)^{2}$.
11. [TIEBREAKER] Let $P(n)$ be the number of ways to write the positive integer n as a sum of not-necessarily distinct positive integers, where order doesn't matter. For example, $P(3)=3$ because $3,1+2$, and $1+1+1$ are all ways of writing 3 as a sum of positive integers. Estimate $\frac{P(2024)}{P(2023)}$ to 5 digits after the decimal point.
