Team Round

LMT "Fall"

December 17, 2022

1. [9] Let x be the positive integer satisfying $5^{2}+28^{2}+39^{2}=24^{2}+35^{2}+x^{2}$. Find x.
2. [10] Ada rolls a standard 4 -sided die 5 times. The probability that the die lands on at most two distinct sides can be written as $\frac{A}{B}$ for relatively prime positive integers A and B. Find $1000 A+B$.
3. [11] Billiam is distributing his ample supply of balls among an ample supply of boxes. He distributes the balls as follows: he places a ball in the first empty box, and then for the greatest positive integer n such that all n boxes from box 1 to box n have at least one ball, he takes all of the balls in those n boxes and puts them into box $n+1$. He then repeats this process indefinitely. Find the number of repetitions of this process it takes for one box to have at least 2022 balls.
4. [12] Find the least positive integer ending in 7 with exactly 12 positive divisors.
5. [13] Let H be a regular hexagon with side length 1 . The sum of the areas of all triangles whose vertices are all vertices of H can be expressed as $A \sqrt{B}$ for positive integers A and B such that B is square-free. What is $1000 A+B$?
6. [15] An isosceles trapezoid $P Q R S$, with $\overline{P Q}=\overline{Q R}=\overline{R S}$ and $\angle P Q R=120^{\circ}$, is inscribed in the graph of $y=x^{2}$ such that $Q R$ is parallel to the x-axis and R is in the first quadrant. The x-coordinate of point R can be written as $\frac{\sqrt{A}}{B}$ for positive integers A and B such that A is square-free. Find $1000 A+B$.
7. [17] A regular hexagon is split into 6 congruent equilateral triangles by drawing in the 3 main diagonals. Each triangle is colored 1 of 4 distinct colors. Rotations and reflections of the figure are considered nondistinct. Find the number of possible distinct colorings.
8. [19] An odd positive integer n can be expressed as the sum of two or more consecutive integers in exactly 2023 ways. Find the greatest possible nonnegative integer k such that 3^{k} is a factor of the least possible value of n.
9. [21] In isosceles trapezoid $A B C D$ with $A B<C D$ and $B C=A D$, the angle bisectors of $\angle A$ and $\angle B$ intersect $C D$ at E and F respectively, and intersect each other outside the trapezoid at G. Given that $A D=8, E F=3$, and $E G=4$, the area of $A B C D$ can be expressed as $\frac{a \sqrt{b}}{c}$ for positive integers a, b, and c, with a and c relatively prime and b squarefree. Find $10000 a+100 b+c$.
10. [23] Let $\alpha=\cos ^{-1}\left(\frac{3}{5}\right)$ and $\beta=\sin ^{-1}\left(\frac{3}{5}\right)$.

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\cos (\alpha n+\beta m)}{2^{n} 3^{m}}
$$

can be written as $\frac{A}{B}$ for relatively prime positive integers A and B. Find $1000 A+B$.

