1. [12] Calculate

$$
\left(4!-5!+2^{5}+2^{6}\right) \cdot \frac{12!}{7!}+(1-3)\left(4!-2^{4}\right)
$$

Proposed by Evin Liang

Solution. -16
As $4!-5!+2^{5}+2^{6}=0$, the answer is $(1-3)\left(4!-2^{4}\right)=-2 \cdot 8=-16$.
2. [12] The expression $\sqrt{9!+10!+11!}$ can be expressed as $a \sqrt{b}$ for positive integers a and b, where b is squarefree. Find a.

Proposed by Jacob Xu

Solution. 792
We rewrite the expression as $\sqrt{9!\cdot(1+10+10 \cdot 11)}=\sqrt{9!\cdot 121}$. Now this is easy to simplify as $11 \sqrt{9!}=$ $11 \sqrt{2^{7} \cdot 3^{4} \cdot 5 \cdot 7}=11 \cdot 2^{3} \cdot 3^{2} \sqrt{2 \cdot 5 \cdot 7}=792 \sqrt{70}$. So $a=792$.
3. [12] For real numbers a and $b, f(x)=a x^{10}-b x^{4}+6 x+10$ for all real x. Given that $f(42)=11$, find $f(-42)$.
Proposed by Ethan Xu

Solution. -493
$f(-x)=a(-x)^{10}-b(-x)^{4}-6 x+10$
$f(-x)=a x^{10}-b x^{4}-6 x+10$
$f(-x)=\left(a x^{10}-b x^{4}+6 x+10\right)-12 x$
$f(-x)=f(x)-12 x$
$f(-42)=f(42)-(12)(42)=11-504=-493$
\qquad 4. [15] How many positive integers less than or equal to 2023 are divisible by 20, 23, or both?

Proposed by Evin Liang
Solution. 184
The answer is $\left\lfloor\frac{2023}{20}\right\rfloor+\left\lfloor\frac{2023}{23}\right\rfloor-\left\lfloor\frac{2023}{460}\right\rfloor=101+87-4=184$.
5. [15] Larry the ant crawls along the surface of a cylinder with height 48 and base radius $\frac{14}{\pi}$. He starts at point A and crawls to point B, traveling the shortest distance possible. What is the maximum this distance could be?
Proposed by Jonathan Liu

Solution. $48+\frac{28}{\pi}$
2 cases: 1st case is only crawling on the rounded surface, which can be unfolded into a right triangle with base 14 height 48 , which is length 502 nd case is when the two points are the two centers of the bases, which has length $\frac{14}{\pi}+48+\frac{14}{\pi}=48+\frac{28}{\pi}$, which is about 56.9 , which is larger than 50 so the answer is $48+\frac{28}{\pi}$
6. [15] For a given positive integer n, Ben knows that $\lfloor 20 x\rfloor=n$, where x is real. With that information, Ben determines that there are 3 distinct possible values for $\lfloor 23 x\rfloor$. Find the least possible value of n.
Proposed by Muztaba Syed
Solution. 6
We have $\frac{n}{20} \leq x<\frac{n+1}{20}$. This means that $\frac{23 n}{20} \leq 23 x<\frac{23 n+23}{20}$. For there to be 3 values there need to be 2 integers between $\frac{23 n}{20}$ and $\frac{23 n+23}{20}$. This means there are 2 multiples of 20 between $23 n$ and $23 n+23$. This means that $23 n$ is slightly less (namely $18,19(\bmod 20))$ than a multiple of 20 , and by inspection we see $n=6$ works.
7. [18] Let $A B C$ be a triangle with area 1. Points D, E, and F lie in the interior of $\triangle A B C$ in such a way that D is the midpoint of $A E, E$ is the midpoint of $B F$, and F is the midpoint of $C D$. Compute the area of $D E F$.
Proposed by Evin Liang
Solution. $\frac{1}{7}$
Using some equal bases you can get that $[D E F]=[B D E]=[B D A]$, and likewise these are all equal to $[B E C]=[E F C]=[A D F]=[A F C]$. Thus the area of $\triangle A B C$ is 7 times the area of $\triangle D E F$, so the answer is $\frac{1}{7}$.
8. [18] Edwin and Amelia decide to settle an argument by running a race against each other. The starting line is at a given vertex of a regular octahedron and the finish line is at the opposite vertex. Edwin has the ability to run straight through the octahedron, while Amelia must stay on the surface of the octahedron. Given that they tie, what is the ratio of Edwin's speed to Amelia's speed?
Proposed by Edwin Zhao
Solution. $\frac{\sqrt{6}}{3}$
WLOG suppose the vertices of the octahedron are at permutations of $(\pm 1,0,0)$. Eddie goes from $(1,0,0)$ to $(-1,0,0)$, for a total distance of 2 . Amelia goes from $(1,0,0)$ to $\left(0, \frac{1}{2}, \frac{1}{2}\right)$ to $(-1,0,0)$, for a total distance of $\sqrt{6}$. Thus, if they tie, Eddie runs $\frac{2}{\sqrt{6}}=\frac{\sqrt{6}}{3}$ times the speed of Amelia.
9. [18] Jxu is rolling a fair three-sided die with faces labeled 0,1 , and 2 . He keeps going until he rolls a 1 , immediately followed by a 2 . What is the expected number of rolls Jxu makes?

Solution. 9
Let E be the answer and F be the expected number of rolls when the last roll is 1 . Then we have $E=1+\frac{2}{3} E+\frac{1}{3} F$ and $F=1+\frac{1}{3} E+\frac{1}{3} F$. The solution is $(E, F)=(9,6)$, so the answer is 9 .

LMT Fall 2023 Guts Round Solutions- Part 4

Team Name:
\qquad 10. [21] For real numbers x and $y, x+x y=10$ and $y+x y=6$. Find the sum of all possible values of $\frac{x}{y}$.

Proposed by Evin Liang

Solution. $\frac{16}{3}$
Subtract to get $x-y=4$, so $x=4+y, y^{2}+5 y-6=0$, and so we have y is 1 or -6 , and in these cases x is 5 or -2 . So the answer is $\frac{5}{1}+\frac{-2}{-6}=\frac{16}{3}$.
11. [21] Derek is thinking of an odd two-digit integer n. He tells Aidan that n is a perfect power and the product of the digits of n is also a perfect power. Find the sum of all possible values of n.
Proposed by Aidan Duncan
Solution. 130
Some guess and check gives $n=49,81 \Longrightarrow 130$
12. [21] Let a three-digit positive integer $N=\overline{a b c}$ (in base 10) be stretchable with respect to m if N is divisible by m, and when N 's middle digit is duplicated an arbitrary number of times, it‘s still divisible by m. How many three-digit positive integers are stretchable with respect to 11? (For example, 432 is stretchable with respect to 6 because $433 \ldots 32$ is divisible by 6 for any positive integer number of 3 s .)
Proposed by Samuel Wang
Solution. 8
Let the integer be $a b c$ (obviously base 10). $a b c$ and $a b b c$ must thus be multiples of 11. However, this means that $a b b c-a b c=900 a+100 b$ is a multiple of 11 , thus $9 a+b$ is a multiple of 11 (or, $b \equiv 2 a \bmod 11$). We thus list out the possibilities for $a, b: a=1: b=2$. This gives $c=1$, or 121 $a=2: b=4$. This gives $c=2$, or $242 a=3, b=6$. This gives $c=3$, or $363 a=4, b=8$. This gives $c=4$, or $484 a=5, b=10$. Obviously, $b \neq 10 . a=6, b=1$. This gives $c=6$, or $616 a=7, b=3$. This gives $c=7$, or $737 a=8, b=5$. This gives $c=8$, or $858 a=9, b=7$. This gives $c=9$, or $979 a=10, b=9$. Obviously, $a \neq 10$. The total number is thus 8 .
13. [27] How many trailing zeroes are in the base-2023 expansion of 2023!?

Proposed by Evin Liang

Solution. 63
We have $2023=7 \cdot 17^{2}$, so the number of trailing zeroes is $\min \left(v_{7}(2023!), \frac{v_{17}(2023!)}{2}\right)$. Clearly $\frac{v_{17}(2023!)}{2}$ is smaller, and we have $v_{17}(2023!)=\left\lfloor\frac{2023}{17}\right\rfloor+\left\lfloor\frac{2023}{17^{2}}\right\rfloor=126$. So the answer is $\frac{126}{2}=63$.
14. [27] The three-digit positive integer $k=\overline{a b c}$ (in base 10 , with a nonzero) satisfies

$$
\overline{a b c}=c^{2 a b-1}
$$

Find the sum of all possible k.
Proposed by Muztaba Syed

Solution. 853
$2 a b-1$ has to be odd, so it really doesn't have many options, since it can't be greater than 9 and is at least 3 . If it is 9 the only possibility is 512 which works. If $2 a b-1=7$ the only possible 7 th power is 128 which doesn't work. For $2 a b-1=5$ the only possibility is $3^{5}=243$ which doesn't work. Finally checking $2 a b-1=3$ we get $125,216,343,512,729$, of which only 125 and 216 work. Thus the answer is $512+125+216=853$.
15. [27] For any positive integer k, let a_{k} be defined as the greatest nonnegative real number such that in an infinite grid of unit squares, no circle with radius less than or equal to a_{k} can partially cover at least k distinct unit squares. (A circle partially covers a unit square only if their intersection has positive area.)
Find the sum of all positive integers $n \leq 12$ such that $a_{n} \neq a_{n+1}$.
Proposed by Peter Bai
Solution. 38
Solution:
$a_{1}: 0 a_{2}: 0 a_{3}: 0 a_{4}: 0 a_{5}: \frac{1}{2} a_{6}: \frac{1}{2} a_{7}: \frac{5}{8} a_{8}: \frac{\sqrt{2}}{2} a_{9}: \frac{\sqrt{2}}{2} a_{10}: 1 a_{11}: 1 a_{12}: 1$
a_{13} is definitely bigger than 1
$4+6+7+9+12=38$
16. [33] Let $p(x)$ and $q(x)$ be polynomials with integer coefficients satisfying $p(1)=q(1)$. Find the greatest integer n such that $\frac{p(2023)-q(2023)}{n}$ is an integer no matter what $p(x)$ and $q(x)$ are.
Proposed by Samuel Wang
Solution. 2022
Solution: As $p(1)=q(1), \mathrm{p}$ and q have the same sum of coefficients. Thus, we see that $p(2023) \equiv$ $q(2023) \bmod 2022$. We also note that 2022 is the max, as we set $p(x)=2, q(x)=x+1$, giving $p(2023)-q(2023)=2022$, thus we cannot go higher, giving $n=2022$
17. [33] Find all ordered pairs of integers (m, n) that satisfy $n^{3}+m^{3}+231=n^{2} m^{2}+n m$.

Proposed by Evin Liang

Solution. $(4,5)$ and $(5,4)$
This equation is $\left(n^{2}-m\right)\left(m^{2}-n\right)=231$. The prime factorization of 231 is $2 \cdot 7 \cdot 11$ and the only solutions are $(n, m)=(4,5)$ and $(5,4)$.
18. [33] Ben rolls the frustum-shaped piece of candy (shown below) in such a way that the lateral area is always in contact with the table. He rolls the candy until it returns to its original position and orientation.

Given that $A B=4$ and $B D=C D=3$, find the length of the path traced by A.
Proposed by Jerry Xu

Solution. $\frac{64 \pi}{3}$
Key observation: The path traced out by the frustum is identical to the path traced out by it's cone. Denote the vertex of the cone as F, and the point opposite B on the base of the cone is E, the point opposite D on its base of the frustum as H, and the altitude from B to the ground as G. Consider the cross-section containing $E B F$. We have that $B E=2 A B=8, D H=2 C D=6$, and $B D=3$. Since $\overline{B E} \| \overline{D H}$, we get that $\triangle B E F \sim \triangle D H F \Longrightarrow B F=E F=12$ (remember that $\triangle B E F$ is isosceles since its the cross-section of a cone). By dropping an altitude from F to $B E$ we get that $[B E F]=32 \sqrt{2}$. Thus, since $B G$ is an altitude, $B G=\frac{16 \sqrt{2}}{3}$. By similar triangles, $A I=B G / 2=\frac{8 \sqrt{2}}{3}$, and by pythag on $A E I$ (noting that $A E=B E / 2=4$) we have that $E I=\frac{4}{3}$ so $I F=\frac{32}{3}$. A is at a constant height and distance from F, so the answer is simply $2 \pi \cdot \frac{32}{3}=\frac{64 \pi}{3}$.
\qquad 19. [39] In their science class, Adam, Chris, Eddie and Sam are independently and randomly assigned an integer grade between 70 and 79 inclusive. Given that they each have a distinct grade, what is the expected value of the maximum grade among their four grades?

Proposed by Samuel Tsui
Solution. 77.8
The different possible values of the maximum are $73,74, \ldots, 79$. By stars and bars the number of ways it can be 73 is $\binom{3}{3}$, the number of ways it can be 74 is $\binom{4}{3}$ and so on up to the number of ways it can be 79 is $\binom{9}{3}$. Since there are a total of $\binom{10}{4}$ ways the expected value is $\frac{73 \cdot\binom{3}{3}+74 \cdot\binom{4}{3}+\cdots+79 \cdot\binom{9}{3}}{\binom{10}{4}}$. Simplifying gives $\frac{72\left(\binom{3}{3}+\binom{4}{3}+\cdots+\binom{9}{3}\right)+\binom{3}{3}+2\binom{4}{3}+\cdots+7\binom{9}{3}}{\binom{10}{4}}$ which is equal to $\frac{72 \cdot\binom{10}{4}+1218}{\binom{10}{4}}$ from hockey stick and a bit of calculation. Thus the answer is $72+\frac{1218}{210}=77 \frac{4}{5}$.
20. [39] Let $A B C D$ be a regular tetrahedron with side length 2. Let point E be the foot of the perpendicular from D to the plane containing $\triangle A B C$. There exist two distinct spheres ω_{1} and ω_{2}, centered at points O_{1} and O_{2} respectively, such that both O_{1} and O_{2} lie on $\overrightarrow{D E}$ and both spheres are tangent to all four of the planes $A B C, B C D, C D A$, and $D A B$. Find the sum of the volumes of ω_{1} and ω_{2}.
Proposed by Peter Bai

Solution. $\frac{\sqrt{6}}{3} \pi$
First of all, we notice that since everything is symmetrical about ray $\overrightarrow{D E}$, the points of tangency of ω_{1} and ω_{2} on plane $A B C$ must both be the centroid of triangle $A B C$. Also due to a symmetry argument, the centroid of triangle $A B C$ must also be point E. (This is possible to verify via repeated applications of the Pythagorean Theorem on various lengths in tetrahedron $A B C D$, but symmetry can be very helpful under time pressure.)
Let's first set up some conventions. Let r_{1} and r_{2} denote the radii of ω_{1} and ω_{2}, respectively, and let point M be the midpoint of segment $\overline{A B}$.
First of all, drawing a rough diagram out on paper, we can see that ω_{1} is actually just inscribed within tetrahedron $A B C . \omega_{2}$ is a bit more difficult to think about, however, but it is also tangent to plane $A B C$ at the same point, except on the other side.
We will begin by finding r_{1}. Consider plane $A B C$.
Since $\triangle A B C$ is equilateral, $\triangle E M B$ is a 30-60-90 triangle. As a result, we have $\overline{E M}=\frac{\sqrt{3}}{3}$. Additionally, since E is the centroid of $\triangle A B C$, we have $\overline{C M}=3 \overline{E M}=\sqrt{3}$.
While we already have E as one point of tangency, analogous 2-dimensional problems involving incircles of triangles usually require the consideration of 2 points of tangency. As a result, it makes sense to also look at the point of tangency between ω_{1} and plane $A B D$. Let us denote this point as G, and again by a symmetry argument, G must be the centroid of $\triangle A B D$. We can now take a cross-section across plane CDM!
Note that $\overline{G O_{1}}=\overline{O_{1} E}=r_{1}$ and that ω_{1} never actually contacts line $\overline{D C}$. Additionally, the diagram is symmetric about ray $\overrightarrow{M O_{1}}$, and thus $\overline{D G}=\overline{E C}=\frac{2 \sqrt{3}}{3}$. Finally, by the Pythagorean Theorem, $\overline{D E}=\sqrt{(\overline{D M})^{2}-(\overline{M E})^{2}}=\sqrt{(\sqrt{3})^{2}-\left(\frac{\sqrt{3}}{3}\right)^{2}}=\frac{2 \sqrt{6}}{3}$.
We can see that $\triangle D G O_{1}$ is similar to $\triangle D E M$. As a result, we have $\frac{\overline{D G}}{\overline{D E}}=\frac{\overline{G O_{1}}}{\overline{M E}}$. Solving,
$\frac{\overline{D G}}{\overline{D E}}=\frac{\overline{G O_{1}}}{\overline{E M}} \Rightarrow \frac{\frac{2 \sqrt{3}}{3}}{\frac{3}{3}}=\frac{r_{1}}{\frac{\sqrt{3}}{3}} \Rightarrow \frac{1}{\sqrt{2}}=\frac{r_{1}}{\frac{\sqrt{3}}{3}} \Rightarrow r_{1}=\frac{\sqrt{6}}{6}$
Moving on to r_{2}, we can take a similar approach by letting the point of tangency between ω_{2} and plane $A B D$ be denoted as H. Taking the cross-section across plane $C D M$ (or equivalently, $D M E$), we begin by noting that $\overline{H O_{2}}=\overline{O_{2} E}=r_{2}$ and $\overline{H M}=\overline{M E}=\frac{\sqrt{3}}{3}$, giving us $\overline{D H}=\sqrt{3}+\frac{\sqrt{3}}{3}=\frac{4 \sqrt{3}}{3}$. Additionally, $\triangle D M E$ is similar to $\triangle D O_{2} H$. As a result, we have $\frac{\overline{D E}}{\overline{D H}}=\frac{\overline{M E}}{\overline{O_{2} H}}$. Solving,
$\frac{\overline{D E}}{\overline{D H}}=\frac{\overline{M E}}{\overline{O_{2} H}} \Rightarrow \frac{\frac{2 \sqrt{6}}{3}}{\frac{4 \sqrt{3}}{3}}=\frac{\frac{\sqrt{3}}{3}}{r_{2}} \Rightarrow \frac{\sqrt{2}}{2}=\frac{\frac{\sqrt{3}}{3}}{r_{2}} \Rightarrow r_{2}=\frac{2}{\sqrt{2}} * \frac{\sqrt{3}}{3}=\frac{\sqrt{6}}{3}$
Finally, all we have to do now is calculate the sum of the volumes.
$\frac{4}{3} \pi\left(\frac{\sqrt{6}}{6}\right)^{3}+\frac{4}{3} \pi\left(\frac{\sqrt{6}}{3}\right)^{3}$
$=\frac{4}{3} \pi\left(\frac{\sqrt{6}}{6}\right)^{3}\left(1+2^{3}\right)$
$=\frac{4}{3} \pi * \frac{\sqrt{6}}{36} * 9$
$=\frac{4}{3} \pi * \frac{\sqrt{6}}{4}$
$=\frac{\sqrt{6}}{3} \pi$
$6+3=9$, which is our answer.
21. [39] Evaluate

$$
\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{(i+j+k+1) 2^{i+j+k+1}}
$$

Proposed by Peter Bai

Solution. $\frac{3}{2}$

We begin with a substitution of $h=i+j+k$, allowing us to collapse the 3 nested summations into a single one in h. Of course, we have to account for that fact that almost all values of h are summed more than once (for example, $5=1+2+2=2+1+2$). Using stars and bars, we can see that there are $\binom{h+2}{2}$ possible values of (i, j, k) summing to any valid h.
As a result, our new summation is:

$$
\begin{aligned}
\sum_{h=0}^{\infty} \frac{1}{(h+1) 2^{h+1}} \cdot \frac{(h+2)(h+1)}{2} & =\sum_{h=0}^{\infty} \frac{1}{2^{h+1}} \cdot \frac{h+2}{2} \\
& =\sum_{h=0}^{\infty} \frac{h+2}{2^{h+2}} \\
& =\sum_{h=2}^{\infty} \frac{h}{2^{h}}
\end{aligned}
$$

This is a simple arithmetico-geometric series, which finally evaluates to our answer of $\frac{3}{2}$.

LMT Fall 2023 Guts Round Solutions- Part 8

Team Name:
22. [45] In $\triangle A B C$, let I_{A}, I_{B}, and I_{C} denote the A, B, and C-excenters, respectively. Given that $A B=15, B C=14$ and $C A=13$, find $\frac{\left[I_{A} I_{B} I_{C}\right]}{[A B C]}$.
Proposed by Jerry $X u$
Solution. 81
By Herons, we have that

$$
\begin{aligned}
{[A B C] } & =\sqrt{21(21-13)(21-14)(21-15)} \\
& =\sqrt{21 \cdot 8 \cdot 7 \cdot 6} \\
& =\sqrt{2^{4} \cdot 3^{2} \cdot 7^{2}} \\
& =84 .
\end{aligned}
$$

Now, the exradius $\left(r_{A}\right)$ is equivalent to

$$
\frac{[A B C]}{s-a},\left(^{*}\right)
$$

where $s=\frac{a+b+c}{2}$ is the semiperimeter. We thus have that $r_{A}=12, r_{B}=10.5$ and $r_{C}=14$. Note that

$$
\begin{aligned}
{\left[I_{A} I_{B} I_{C}\right] } & =[A B C]+\left[I_{A} B C\right]+\left[I_{B} A C\right]+\left[I_{C} A B\right] \\
& =84+\frac{10.5 \cdot 13}{2}+\frac{12 \cdot 14}{2}+\frac{14 \cdot 15}{2} \\
& =341.25
\end{aligned}
$$

(Note that the radius from I_{A} to $B C$ is tangent and therefore forms a right angle, so that radius is also an altitude. The same applies for I_{B} to $A C$ and I_{C} to $A B$.)
We thus get an answer of $\frac{341.25}{84}=\frac{65}{16} \longrightarrow 81$.
23. [45] The polynomial

$$
x+2 x^{2}+3 x^{3}+4 x^{4}+5 x^{5}+6 x^{6}+5 x^{7}+4 x^{8}+3 x^{9}+2 x^{10}+x^{11}
$$

has distinct complex roots $z_{1}, z_{2}, \ldots, z_{n}$. Find

$$
\sum_{k=1}^{n}\left|\Re\left(z_{n}^{2}\right)\right|+\left|\Im\left(z_{n}^{2}\right)\right|
$$

where $\Re z$ and $\Im z$ indicate the real and imaginary parts of z, respectively. Express your answer in simplest radical form.

Proposed by Jerry Xu

Solution. $3+2 \sqrt{3}$
Observe that $P(x)=x\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)^{2}$. Hence the roots are 0 and the 6 th roots of unity excluding 1.0 doesn't contribute to the sum. Among the other solutions, -1 squares to 1 and the rest square to $-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$. Hence the answer is $1+4\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right)=3+2 \sqrt{3}$.
24. [45] Given that $\sin 33^{\circ}+2 \sin 161^{\circ} \cdot \sin 38^{\circ}=\sin n^{\circ}$, compute the least positive integer value of n. Proposed by Evin Liang

Solution. 71
By double angle $\sin 38^{\circ}=2 \sin 19^{\circ} \cos 19^{\circ}$. Additionally $\sin 161^{\circ}=\sin 19^{\circ}$ so $2 \sin 161^{\circ} \sin 38^{\circ}=$ $4 \sin ^{2} 19^{\circ} \cos 19^{\circ}$. By triple angle $\cos 57^{\circ}=\cos 19^{\circ}-4 \sin ^{2} 19^{\circ} \cos 19^{\circ}$, and therefore $\sin 33^{\circ}+2 \sin 161^{\circ} \sin 38^{\circ}=$ $\cos 19^{\circ}=\sin 71^{\circ}$.

LMT Fall 2023 Guts Round Solutions- Part 9

Team Name:
25. [30] Submit a prime between 2 and 2023, inclusive. If you don't, or if you submit the same number as another team's submission, you will receive 0 points. Otherwise, your score will be

$$
\min (30,\lfloor 4 \cdot \ln (x)\rfloor)
$$

where x is the positive difference between your submission and the closest valid submission made by another team.
Proposed by Edwin Zhao
Solution. TBD
Game Theory
26. [30] Sam, Derek, Jacob, and Muztaba are eating a very large pizza with 2023 slices. Due to dietary preferences, Sam will only eat an even number of slices, Derek will only eat a multiple of 3 slices, Jacob will only eat a multiple of 5 slices, and Muztaba will only eat a multiple of 7 slices. How many ways are there for Sam, Derek, Jacob, and Muztaba to eat the pizza, given that all slices are identical and order of slices eaten is irrelevant? If your answer is A and the correct answer is C, the number of points you receive will be:

$$
\max \left(0,\left\lfloor 30\left(1-2 \sqrt{\frac{|A-C|}{C}}\right)\right\rfloor\right)
$$

Proposed by Sam Wang
Solution. 6653921
Python program
27. [30] Let $\Omega(k)$ denote the number of perfect square divisors of k. Compute

$$
\sum_{k=1}^{10000} \Omega(k) .
$$

If your answer is A and the correct answer is C, the number of points you recieve will be

$$
\max \left(0,\left\lfloor 30\left(1-4 \sqrt{\frac{|A-C|}{C}}\right)\right\rfloor\right)
$$

Proposed by Muztaba Syed
Solution. 16307
Python Program.
Approximation technique: We can instead count the number of multiples of each perfect square less than 10000 . This gives us

$$
\sum_{k=1}^{100}\left\lfloor\frac{10000}{k^{2}}\right\rfloor
$$

This is easier to approximate using the fact that $\frac{1}{1}+\frac{1}{4}+\frac{1}{9}+\cdots=\frac{\pi^{2}}{6}$. We can easily approximate $10000 \cdot \frac{\pi^{2}}{6} \approx 16450$. This will be too big because of the floors and because we don't go to infinity. Submitting 16450 would get 18 points already and this can be improved by approximating our overcount.

