6th Annual Lexington Math Tournament Guts Round - Part 1
Team $\qquad$

1. $\qquad$
2. $\qquad$
3. $\qquad$

6th Annual Lexington Math Tournament Guts Round - Part 2
Team $\qquad$
4. $\qquad$
5. $\qquad$
6. $\qquad$

6th Annual Lexington Math Tournament Guts Round - Part 3
Team $\qquad$
7. $\qquad$
8. $\qquad$
9. $\qquad$

6th Annual Lexington Math Tournament Guts Round - Part 4
Team $\qquad$
10. $\qquad$
11. $\qquad$
12. $\qquad$

6th Annual Lexington Math Tournament Guts Round - Part 5
Team $\qquad$
13. $\qquad$
14. $\qquad$
15. $\qquad$

6th Annual Lexington Math Tournament Guts Round - Part 6
Team $\qquad$
16. $\qquad$
17. $\qquad$
18. $\qquad$

6th Annual Lexington Math Tournament Guts Round - Part 7
Team $\qquad$
19. $\qquad$
20. $\qquad$
21. $\qquad$

6th Annual Lexington Math Tournament Guts Round - Part 8
Team $\qquad$
22. $\qquad$
23. $\qquad$
24. $\qquad$

6th Annual Lexington Math Tournament Guts Round - Part 9
Team $\qquad$
25. $\qquad$
26. $\qquad$
27. $\qquad$

6th Annual Lexington Math Tournament Guts Round - Part 10
Team $\qquad$
28. $\qquad$
29. $\qquad$
30. $\qquad$

6th Annual Lexington Math Tournament Guts Round - Part 11
Team $\qquad$
31.
32. $\qquad$
33. $\qquad$

6th Annual Lexington Math Tournament Guts Round - Part 12
Team
34. $\qquad$
35. $\qquad$
36. $\qquad$

## 6th Annual Lexington Math Tournament Guts Round - Part 1

1.[4] 1. Every angle of a regular polygon has degree measure 179.99 degrees. How many sides does it have?
2.[4] What is $\frac{1}{20}+\frac{1}{1}+\frac{1}{5}$ ?
3. [4] If the area bounded by the lines $y=0, x=0$, and $x=3$ and the curve $y=f(x)$ is 10 units, what is the area bounded by $y=0, x=0, x=6$, and $y=f(x / 2)$ ?

## 6th Annual Lexington Math Tournament Guts Round - Part 2

4.[5] How many ways can 42 be expressed as the sum of 2 or more consecutive positive integers?
5.[5] How many integers less than or equal to 2015 can be expressed as the sum of 2 (not necessarily distinct) powers of two?
6.[5] $p, q$, and $q^{2}-p^{2}$ are all prime. What is $p q$ ?

## 6th Annual Lexington Math Tournament Guts Round - Part 3

7.[6] Let $p(x)=x^{2}+a x+a$ be a polynomial with integer roots, where $a$ is an integer. What are all the possible values of $a$ ?
8.[6] In a given right triangle, the perimeter is 30 and the sum of the squares of the sides is 338 . Find the lengths of the three sides.
9.[6] Each of the 6 main diagonals of a regular hexagon is drawn, resulting in 6 triangles. Each of those triangles is then split into 4 equilateral triangles by connecting the midpoints of the 3 sides. How many triangles are in the resulting figure?

## 6th Annual Lexington Math Tournament Guts Round - Part 4

10. [6] Let $f=5 x+3 y$, where $x$ and $y$ are positive real numbers such that $x y$ is 100 . Find the minimum possible value of $f$.
11.[6] An integer is called "Awesome" if its base 8 expression contains the digit string 17 at any point (i.e. if it ever has a 1 followed immediately by a 7 ). How many integers from 1 to 500 (base 10) inclusive are Awesome?
12.[6] A certain pool table is a rectangle measuring $15 \times 24$ feet, with 4 holes, one at each vertex. When playing pool, Joe decides that a ball has to hit at least 2 sides before getting into a hole or else the shot does not count. What is the minimum distance a ball can travel after being hit on this table if it was hit at a vertex (assume it only stops after going into a hole) such that the shot counts?

## 6th Annual Lexington Math Tournament Guts Round - Part 5

13.[7] Sally is at the special glasses shop, where there are many different optical lenses that distort what she sees and cause her to see things strangely. Whenever she looks at a shape through lens $A$, she sees a shape with 2 more sides than the original (so a square would look like a hexagon). When she looks through lens $B$, she sees the shape with 3 fewer sides (so a hexagon would look like a triangle). How many sides are in the shape that has 200 more diagonals when looked at from lense $A$ than from lense $B$ ?
14.[7] How many ways can you choose 2 cells of a 5 by 5 grid such that they aren't in the same row or column?
15.[7] If $a+\frac{1}{b}=(2015)^{-1}$ and $b+\frac{1}{a}=(2016)^{2}$ then what are all the possible values of $b$ ?

6th Annual Lexington Math Tournament Guts Round - Part 6
16. [7] In Canadian football, linebackers must wear jersey numbers from $30-35$ while defensive linemen must wear numbers from $33-38$ (both intervals are inclusive). If a team has 5 linebackers and 4 defensive linemen, how many ways can it assign jersey numbers to the 9 players such that no two people have the same jersey number?
17.[7] What is the maximum possible area of a right triangle with hypotenuse 8 ?
18.[7] 9 people are to play touch football. One will be designated the quarterback, while the other eight will be divided into two (indistinct) teams of 4 . How many ways are there for this to be done?

$$
\text { 6th Annual Lexington Math Tournament Guts Round - Part } 7
$$

19. [8] Express the decimal 0.3 in base 7 .
20. [8] 2015 people throw their hats in a pile. One at a time, they each take one hat out of the pile so that each has a random hat. What is the expected number of people who get their own hat?
21.[8] What is the area of the largest possible trapezoid that can be inscribed in a semicircle of radius $4 ?$

## 6th Annual Lexington Math Tournament Guts Round - Part 8

22.[8] What is the base 7 expression of $1211_{3} \cdot 1110_{2} \cdot 292_{11} \cdot 20_{3}$ ?
23. [8] Let $f(x)$ equal the ratio of the surface area of a sphere of radius $x$ to the volume of that same sphere. Let $g(x)$ be a quadratic polynomial in the form $x^{2}+b x+c$ with $g(6)=0$ and the minimum value of $g(x)$ equal to $c$. Express $g(x)$ as a function of $f(x)$ (e.g. in terms of $f(x)$ ).
24. [8] In the country of Tahksess, the income tax code is very complicated. Citizens are taxed $40 \%$ on their first $\$ 20,000$ and $45 \%$ on their next $\$ 40,000$ and $50 \%$ on their next $\$ 60,000$ and so on, with each $5 \%$ increase in tax rate affecting $\$ 20,000$ more than the previous tax rate. The maximum tax rate, however, is $90 \%$. What is the overall tax rate (percentage of money owed) on 1 million dollars in income?

## 6th Annual Lexington Math Tournament Guts Round - Part 9

25.[9] For how many nonempty subsets of $\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}$ is the sum of the elements divisble by 32 ?
26.[9] America declared independence in 1776. Take the sum of the cubes of the digits of 1776 and let that equal $S_{1}$. Sum the cubes of the digits of $S_{1}$ to get $S_{2}$. Repeat this process 1776 times. What is $S_{1776}$ ?
27.[9] Every Golden Grahams box contains a randomly colored toy car, which is one of four colors. What is the expected number of boxes you have to buy in order to obtain one car of each color?

## 6th Annual Lexington Math Tournament Guts Round - Part 10

28. [10] Let $B$ be the answer to Question 29 and $C$ be the answer to Question 30. What is the sum of the square roots of $B$ and $C$ ?
29. [10] Let $A$ be the answer to Question 28 and $C$ be the answer to Question 30. What is the sum of the sums of the digits of $A$ and $C$ ?
30. [10] Let $A$ be the answer to Question 28 and $B$ be the answer to Question 29 . What is $A+B$ ?

6th Annual Lexington Math Tournament Guts Round - Part 11
31. [11] If $x+\frac{1}{x}=4$, find $x^{6}+\frac{1}{x^{6}}$.
32. [11] Given a positive integer $n$ and a prime $p$, there is are unique nonnegative integers $a$ and $b$ such that $n=p^{b} \cdot a$ and $\operatorname{gcd}(a, p)=1$. Let $v_{p}(n)$ denote this uniquely determined $a$. Let $S$ denote the set of the first 20 primes. Find $\sum_{p \in S} v_{p}\left(1+\sum_{i=0}^{100} p^{i}\right)$.
33. [11] Find the maximum value of $n$ such that $n+\sqrt{(n-1)+\sqrt{(n-2)+\cdots+\sqrt{1}}}<49$ (Note: there would be $n-1$ square roots and $n$ total terms).

34 . $\left[\leq 20\right.$ ] Give two numbers $a$ and $b$ such that $2015^{a}<2015!<2015^{b}$. If you are incorrect you get -5 points; if you do not answer you get 0 points; otherwise you get $\max \{20-0.02(|b-a|-1), 0\}$ points, rounded down to the nearest integer.
$35 .[\leq 20]$ Twin primes are prime numbers whose difference is 2 . Let $(a, b)$ be the $91717^{t h}$ pair of twin primes, with $a<b$. Let $k=a^{b}$, and suppose that $j$ is the number of digits in the base 10 representation of $k$. What is $j^{5}$ ? If the correct answer is $n$ and you say $m$, you will receive $\max \left(20-\left|\log \left(\left|\frac{m}{n}\right|\right)\right|, 0\right)$ points, rounded down to the nearest integer.

36 . $[\leq K]$ Write down any positive integer. Let the sum of the valid submissions (i.e. positive integer submissions) for all teams be $S$. One team will be chosen randomly, according to the following distribution: if your team's submission is $n$, you will be chosen with probability $\frac{n}{S}$. The amount of points that the chosen team will win is the greatest integer not exceeding $\min \left\{K, \frac{10000}{S}\right\} . K$ is a predetermined secret value.

