3rd Annual Lexington Mathematical Tournament Theme Round

Solutions

1 Dragons

1. Answer: 1570

Solution: Dragonite flies a total of $2 \pi(4000)=25120$ miles in 16 hours. That is $\frac{25120}{16}=1570$ miles per hour.
2. Answer: 105

Solution: The number of ways to move from (x, y) to $(x+h, y+k)$ by only moving east and north one unit at a time is $\binom{h+k}{k}$, because out of the $(h+k)$ moves, we must choose h of them to be east. From $(0,0)$ to $(2,5)$, we have $\binom{7}{2}$ possible moves, and from $(2,5)$ to $(6,6)$, we have $\binom{5}{1}$ possible moves. Thus, there are $\binom{7}{2} \cdot\binom{5}{1}=105$ possible paths that Toothless can take.
3. Answer: 22

Solution: On the k th day, Smaug steals $1+2+\cdots+k=\frac{k(k+1)}{2}=\binom{k+1}{2}$ pieces of treasure. Therefore, he will have stolen $\binom{2}{2}+\binom{3}{2}+\cdots+\binom{k+1}{2}$ pieces of trasure by the k th day. By the hockey-stick theorem, this expression is simply $\binom{k+2}{3}$. So we must find the smallest integer k for which $\binom{k+2}{3} \geq 2012$. By trial and error, we find that the answer is 22 .
4. Answer: 120

Solution: Temeraire can read the math books in one of four ways: (1) first, third, and fifth; (2) first, third, and sixth; (3) first, fourth, and sixth; (4) second, fourth, and sixth. These can be split up into two cases:
Case 1 and 4: There are no restrictions as to when to read the other three books. There are 3 ! ways to order the math books and 3 ! ways to order the others, for a total of 36 ways.
Case 2 and 3: One of the science books must be read between the two math books. There are 3 ! ways to order the math books, 2 ways to choose the science book, and 2 ! ways to order the rest, for a total of 24 ways.
Thus, there are a total of $2 \cdot 36+2 \cdot 24=120$ ways in which Temeraire can read the six books.
5. Answer: $\frac{200}{3}$

Solution: Assume that Saphira flies at r miles per hour. After t hours, Thorn is $50-50 t$ miles east and $r t$ miles south of Saphira. From the Pythagorean theorem, we get that he is $\sqrt{(50-50 t)^{2}+(r t)^{2}}=\sqrt{\left(2500+r^{2}\right) t^{2}-5000 t+2500}$ miles away from her. This value must be greater than or equal to 40 , so $\left(2500+r^{2}\right) t^{2}-5000 t+2500 \geq 1600$. The minimum value of a quadratic $y=a x^{2}+b x+c$ is achieved when $x=-\frac{b}{2 a}$ and $y=c-\frac{b^{2}}{4 a}$. Therefore, $c-\frac{b^{2}}{4 a}=2500-\frac{(-5000)^{2}}{4\left(2500+r^{2}\right)} \geq 1600 \Rightarrow \frac{5000^{2}}{4\left(2500+r^{2}\right)} \leq 900 \Rightarrow 2500+r^{2} \geq \frac{62500}{9} \Rightarrow r \geq \frac{200}{3}$. Thus, Saphira must fly at a rate of at least $\frac{200}{3}$ miles per hour.

2 Knights and Knaves

6. Answer: 16

Solution: There are $\binom{5}{3}=10$ to choose three knights, $\binom{5}{4}=5$ ways to choose four knights, and $\binom{5}{5}=1$ way to choose five. Therefore, there are $10+5+1=16$ total possible ways.

7. Answer: Ali and Cam

Solution: First, assume that Ali tells the truth. Then, either Bob and Dan must be a knave. If Bob is a knave, then Ali and Eve must both be knaves. Since we have already assumed that Ali is a knight, we have a contradiction. Now, assume that Dan is a knave. Then, Ali and Cam are both knights. We know that Bob must be a knight, so Eve must be lying. However, we have exactly two knaves this way, so we again arrive at a contradiction. Therefore, Ali must be lying. Both Bob and Dan are knights. From what Bob says, Eve must be a knight. From Dan, Cam must be lying. Everything works out, so we have Ali and Cam as knaves.
8. Answer: 16

Solution: For each pair of two players sitting opposite to each other, they can either both be knights or both be knaves. Since there are 4 such pairs of players, there are $2^{4}=16$ ways in total to assign the roles.
9. Answer: 4

Solution: For each knight, there must be at most four knaves, one on each side of the knight. Therefore, we must have at least 4 knights. 4 knights can be achieved by placing them on the sides so that each knight is separated from two other knights by one knight's move in chess. (Coincidence?)
10. Answer: 43

Solution: Case 1: The player in the top-left corner is a knight. Then, that player's two adjacent players must be knaves. Then, the leftmost unassigned player must be a knight. It turns out that for each unassigned column of players, save the rightmost column, we must assign one player to be a knight and one to be a knave. However, we cannot have three of the same arrangements in a row, or else the knave in the middle column would be correct. The rightmost column must be arranged in the opposite way as the one to its left. For $0 \leq x \leq 7$, let $f(x)=0$ if the column to the right of the $(x+1)$ th column, counting from the left, is arranged in the same way as the x th column, and let $f(x)=1$ otherwise. We know that $f(0)=f(7)=1$, so we seek the number of ways to assign the rest. Our previous restriction tells us that for $0 \leq x \leq 6$, we must not have $f(x)=f(x+1)=0$.
Let $g(n)$ denote the number of ways to assign $f(x)$ for $1 \leq x \leq n$. Then, we look for $g(6)$. Assume at first that the domain of $f(x)$ is $x=1$. Then, $g(1)=2$. For $1 \leq x \leq 2$, we can see that $g(2)=3$. If we let $1 \leq x \leq k$ for some larger k, we see that if we let $f(k)=1$, we have $g(k-1)$ ways to assign the rest without restriction, but if we let $f(k)=0$, $f(k-1)$ must be 1 and we have $g(k-2)$ ways to assign the rest without restriction. Therefore, $g(k)=g(k-1)+g(k-2)$ for $k>2$. Using this recursive formula, we get that $g(3)=5$, $g(4)=8, g(5)=13$, and $g(6)=21$. Thus, there are 21 total possibilities in this case.
Case 2: The player in the top-left corner is a knave. If we let the left-most unassigned player be a knight, then we have the same argument as in Case 1, which results to 21 ways. If we let that player be a knave, then the two players in the left-most unassigned column must be knights. Each subsequent column must either be composed of two knights or two knaves and be different from its adjacent columns. There is 1 way to do this.
In total, there are $21+21+1=43$ possible ways.

3 Evaluate-athon

11. Answer: 351

Solution: The k th term of this arithmetic series is $3+4(k-1)$. The last term is the 13 th term, which we get by solving $3+4(k-1)=51$. The total sum of the series $a_{1}+a_{2}+\cdots+a_{n}$ is therefore $\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{13}{2}(3+51)=351$.
12. Answer: 555555

Solution: We see that we can rewrite $123 \cdot 357+123 \cdot 644+432 \cdot 357+432 \cdot 644$ as $123(357+$ $644)+432(357+644)=(123+432)(357+644)=555 \cdot 1001=555555$.
13. Answer: 4052171

Solution: We let $2012=2011+1$ and compute as follows: $\left\lfloor\frac{(2011+1)^{4}}{2011^{2}}\right\rfloor=\left\lfloor\left(\frac{(2011+1)^{2}}{2011}\right)^{2}\right\rfloor=$ $\left\lfloor\left(\frac{2011^{2}+2 \cdot 2011+1}{2011}\right)^{2}\right\rfloor=\left\lfloor\left(2011+2+\frac{1}{2011}\right)^{2}\right\rfloor=\left\lfloor\left(2013+\frac{1}{2011}\right)^{2}\right\rfloor=\left\lfloor 2013^{2}+2 \cdot \frac{2013}{2011}+\frac{1}{2011^{2}}\right\rfloor=$ $\left\lfloor 4052169+2+\frac{4}{2011}+\frac{1}{2011^{2}}\right\rfloor=\left\lfloor 4052171+\frac{4}{2011}+\frac{1}{2011^{2}}\right\rfloor=4052171$.
14. Answer: $\frac{29525}{1024}$

Solution: $\binom{10}{10}+\binom{10}{8}\left(\frac{1}{2}\right)^{2}+\binom{10}{6}\left(\frac{1}{2}\right)^{4}+\cdots+\binom{10}{0}\left(\frac{1}{2}\right)^{10}=\frac{1}{2}\left(\left[\binom{10}{10}+\binom{10}{9}\left(\frac{1}{2}\right)^{1}+\binom{10}{8}\left(\frac{1}{2}\right)^{2}+\binom{10}{7}\left(\frac{1}{2}\right)^{3}+\right.\right.$ $\left.\left.\ldots+\binom{10}{1}\left(\frac{1}{2}\right)^{9}+\binom{10}{0}\left(\frac{1}{2}\right)^{10}\right]+\left[\binom{10}{10}-\binom{10}{9}\left(\frac{1}{2}\right)^{1}+\binom{10}{8}\left(\frac{1}{2}\right)^{2}-\binom{10}{7}\left(\frac{1}{2}\right)^{3}+\ldots-\binom{10}{1}\left(\frac{1}{2}\right)^{9}+\binom{10}{0}\left(\frac{1}{2}\right)^{10}\right]\right)$. By the binomial theorem, this expression becomes $\frac{1}{2}\left(\left(1+\frac{1}{2}\right)^{10}+\left(1-\frac{1}{2}\right)^{10}\right)=\frac{1}{2}\left(\frac{3^{10}+1}{2^{10}}\right)=\frac{29525}{1024}$.
15. Answer: $\frac{7}{8}$

Solution: We observe and claim that $\left(1^{-3}+2^{-3}+\left(2^{2}\right)^{-3}+\left(2^{3}\right)^{-3}+\cdots\right)\left(1^{-3}+3^{-3}+5^{-3}+\right.$ $\left.7^{-3}+\cdots\right)=1^{-3}+2^{-3}+3^{-3}+4^{-3}+\cdots$. We can see that this equation holds by showing that any $k^{-3}, k>0$, can be expressed uniquely as the product of one term from each infinite series on the left hand side.
Let $k=2^{m} \times n$ such that $\left(2^{m}\right)^{-3}$ is a term in $1^{-3}+2^{-3}+\left(2^{2}\right)^{-3}+\left(2^{3}\right)^{-3}+\cdots$ and n^{-3} is a term in $1^{-3}+3^{-3}+5^{-3}+7^{-3}+\cdots . n$ must be odd, and one way to satisfy this condition is to let m equal the number of powers of 2 that n has. Now, if m is any higher, then n is not an integer, and if m is any lower, n becomes even. Thus, m and n are unique.
$1^{-3}+2^{-3}+\left(2^{2}\right)^{-3}+\left(2^{3}\right)^{-3}+\cdots$ is an infinite geometric series that sums to $\frac{1}{1-2^{-3}}=\frac{8}{7}$. Thus, $\frac{1^{-3}+3^{-3}+5^{-3}+7^{-3}+\cdots}{1^{-3}+2^{-3}+3^{-3}+4^{-3}+\cdots}=\frac{1^{-3}+3^{-3}+5^{-3}+7^{-3}+\cdots}{\frac{8}{7}\left(1^{-3}+3^{-3}+5^{-3}+7^{-3}+\cdots\right)}=\frac{7}{8}$.
Additional note: Nobody actually knows the exact values of $1^{-3}+2^{-3}+3^{-3}+4^{-3}+\cdots$ and $1^{-3}+3^{-3}+5^{-3}+7^{-3}+\cdots$! However, the ratio of the two expressions can be found without knowing the values of the expressions themselves.

