# 3rd Annual Lexington Mathematical Tournament Team Round 

Solutions

## 1 Potpourri

1. Answer: 77

Solution:
2. Answer: 3

Solution: Let $a, b$, and $c$ be the radii of circles $A, B$, and $C$, respectively. Then, $a+b=8$, $a+c=10$, and $b+c=12$. Solving gives $a=3, b=5$, and $c=7$.
3. Answer: 31

Solution: Solving $\frac{1}{x}+\frac{2}{2 y+1}=\frac{1}{y}$ for $x$, we get $\frac{1}{x}=\frac{1}{y}-\frac{2}{2 y+1}=\frac{2 y+1}{y(2 y+1)}-\frac{2 y}{y(2 y+1)}=\frac{1}{2 y^{2}+1} \Rightarrow$ $x=2 y^{2}+1$. Since $x<2012,2 y^{2}+1<2012 \Rightarrow y^{2}<1005.5$. There are 31 square numbers $y^{2}$ that satisfy this inequality, so there are 31 possible valies of $x$.
4. Answer: -1 and 19

Solution: We have that $|8-2 x|=11+x$. If $8-2 x \geq 0 \Rightarrow x \leq 4$, then $8-2 x=11+x \Rightarrow x=-1$. If $8-2 x<0 \Rightarrow x>4$, then $-(8-2 x)=11+x \Rightarrow x=19$. Therefore, the two solutions are $x=-1$ and $x=19$.
5. Answer: $-\frac{4}{9}$

Solution: The line with slope 4 intersects the $x$-axis at $(2,0)$. Let the other line intersect the $y$-axis at $(0, k)$. Then, by dividing the left-most region by cutting it at the line $y=4$, we see that the area of the region is the sum of the area of a trapezoid, which is 10 , and the area of a triangle, which is $\frac{3}{2}(k-4)$. The area of this region must equal $\frac{1}{4}$ of that of the entire region, or $\frac{1}{4} \cdot 48=12$. Therefore, we have $10+\frac{3}{2}(k-4)=12 \Rightarrow k=\frac{16}{3}$. Finally, from the points $\left(0, \frac{16}{3}\right)$ and $(3,4)$, we find that the slope of the line is $\frac{4-16 / 3}{3-0}=-\frac{4}{9}$.
6. Answer: 10

Solution: The sum of the angles of a polygon with $n$ sides is $(n-2) \cdot 180$. Since the sum of the angles of the polygon is composed of nonzero multiples of 138 and 150 , we have $138 n<$ $(n-2) \cdot 180<150 n$. Solving this inequality, we get $\frac{60}{7}<n<12$. Let there be $x$ angles of degree 138. Then, we have $138 x+150(n-x) \equiv 0(\bmod 180) \Rightarrow 23 x+25(n-x)=25 n-2 x \equiv 0$ (mod 30). It follows that $n$ must be even. Thus, the only possible value for $n$ is 10 . (The polygon has five of each angle.)
7. Answer: 514.5

Solution: Since $L M T \geq 100$, MATH $\leq 1912$, which means that $M$ must be 1 . Then we express the sum in terms of the digits: $1000 M+100 A+10 T+H+100 L+10 M+T=$ $1010+100 A+100 L+10 T+H=2012 \Rightarrow 100(A+L)+11 T+H=1002$. Taking this mod 100 gives $11 T+H \equiv 2(\bmod 100)$. Since $0 \leq 11 T+H \leq 11(99)+(9)=108,11 T+H$ can either be 2 or 102. If $11 T+H=2$, then $T=0$ and $A+L=10$, so the possible values of $L M T$ are $110,210,310, \ldots, 910$. If $11 T+H=102$, when $T=9$ and $A+L=9$, so the possible values of $L M T$ are $119,219,319, \ldots, 919$. These values have an average of 514.5 .
8. Answer: 2

Solution: Let $O$ be the center and $X$ and $Y$ be two points on side $S$ of the larger square. For $X$ and $Y$ to be vertices of the two smaller squares, we must have $O X$ and $O Y$ be half the length of the diagonals of the smaller squares, or $\frac{1}{2} \cdot \sqrt{7} \cdot \sqrt{2}=\frac{\sqrt{14}}{2}$. Let the perpendicular from $O$ to side $S$ intersect $S$ at $P$. Then, $O P=\frac{\sqrt{10}}{2}$. By the Pythagorean theorem, $O P^{2}+P X^{2}=O X^{2} \Rightarrow$ $P X=\sqrt{O X^{2}-O P^{2}}=\sqrt{\left(\frac{\sqrt{14}}{2}\right)^{2}-\left(\frac{\sqrt{10}}{2}\right)^{2}}=1$. Similarly, $O P^{2}+P Y^{2}=O Y^{2} \Rightarrow P Y=1$. Thus, the distance between $X$ and $Y$ is $P X+P Y=2$.
9. Answer: 120127

Solution: There is only one four-digit number with a substring of 2012. For five-digit numbers, we can either place the remaining digit ahead of or behind 2012. We have 9 choices for placing a digit ahead and 10 for behind. This makes 20 numbers so far. Then, we list the ten smallest six-digit numbers: $102012,112012,120120,120121,120122,120123,120124,120125,120126$, 120127. Therefore, the 30th number in the sequence is 120127 .
10. Answer: 2101

Solution: Let $a, b$, and $c$ be the number of times the terms $x, \sqrt{x}$, and $\sqrt[3]{x}$ are used, respectively. Then, we look for the solutions of $a+b+c=10$ and $a+\frac{b}{2}+\frac{c}{3}=5$. Substituting $10-b-c$ for $a$ in the second equation gives $10-b-c+\frac{b}{2}+\frac{c}{3}=5 \Rightarrow 3 b+4 c=30$. Taking this equation $\bmod 3$ gives $c \equiv 0(\bmod 3)$. If $c=0$, then $b=10$ and $a=0$. If $c=3$, then $b=6$ and $a=1$. If $c=6$, then $b=2$ and $a=2$. The number of ways to choose $a x$ terms, $b \sqrt{x}$ terms, and $c \sqrt[3]{x}$ terms from ten expressions of $x+\sqrt{x}+\sqrt[3]{x}$ is $\binom{10}{10-a}\binom{10-a}{b}$. Therefore, there are $\binom{10}{0}\binom{10}{10}+\binom{10}{1}\binom{9}{6}+\binom{10}{2}\binom{8}{2}=2101$ possible ways.

## 2 Long Answer

### 2.1 The 7 Divisibility Rule

1. Let $d \mid N$ denote that $N$ is divisible by $d$. Let $N=10 m+n \equiv r(\bmod 7)$ where $n$ is a singledigit integer. After applying the divisibility rule, we get $m-2 n \equiv 10(m-2 n)=10 m-20 n=$ $N-21 n \equiv N(\bmod 7)$ because 10 and 7 are relatively prime and because $7 \mid 21 n$. Since the two integers always have the same residue $\bmod 7,7 \mid N$ if and only if $7 \mid N-21 n$.
2. Let $N=10 m+n \equiv r(\bmod d)$ where $n$ is a single-digit integer. After applying the rule, we get $m-k n \equiv 10(m-k n)=10 m-10 k n=N-(10 k+1) n(\bmod d)$ because 10 and $d$ are relatively prime. Since $d|N \Rightarrow d| N-(10 k+1) n$, we must have $d \mid(10 k+1) n$. Since $n$ can be any digit, letting $n=1$ gives $d \mid(10 k+1)$. Therefore, $k$ must satisfy $d \mid(10 k+1)$. Now we show that such a $k$ works. Let $N=10 m+n \equiv r(\bmod d)$ where $n$ is a single-digit integer. After applying the divisibility rule, we get $m-k n \equiv 10(m-k n)=N-(10 k+1) n \equiv N(\bmod$ 7) because $d \mid(10 k+1) n$. Since the two integers always have the same residue $\bmod d, d \mid N$ if and only if $d \mid N-(10 k+1) n$.
(a) We find that $k=1$ is the smallest value of $k$ for which $11 \mid 10 k+1$. Therefore, $k=1$.
(b) We find that $k=5$ is the smallest value of $k$ for which $17 \mid 10 k+1$. Therefore, $k=5$.

### 2.2 Solving Cubic Equations

3. Substituting $a-b$ for $x$ and $a^{3}-b^{3}$ for the 12 on the right-hand side gives $(a-b)^{3}+12(a-b)=$ $a^{3}-b^{3} \Rightarrow a^{3}-3 a^{2} b+3 a b^{2}-b^{3}+12(a-b)=a^{3}-b^{3} \Rightarrow 12(a-b)=3 a b(a-b) \Rightarrow a b=4$ (since $a-b \neq 0$ ).
4. We have that $a b=4 \Rightarrow a^{3} b^{3}=64$ and that $a^{3}-b^{3}=12$. Substituting $\frac{64}{a^{3}}$ for $b^{3}$ in the second equation gives $a^{3}-\frac{64}{a^{3}}=12 \Rightarrow\left(a^{3}\right)^{2}-12 a^{3}-64=0$. This equation is a quadratic in terms of $a^{3}$ and factors to $\left(a^{3}+4\right)\left(a^{3}-16\right)=0 \Rightarrow a=-\sqrt[3]{3}$ or $\sqrt[3]{16}$. Since we need to only find one solution, let $a=\sqrt[3]{16}$. (It turns out that if we let $a=-\sqrt[3]{3}$, we will get the same value of $x$, just in a slightly different form. In fact, the cubic equation only has one real solution.) Then, $b^{3}=a^{3}-12=4 \Rightarrow b=\sqrt[3]{4}$. Thus, $x=\sqrt[3]{16}-\sqrt[3]{4}=2 \sqrt[3]{2}-\sqrt[3]{4}$.
5. Again, we substitute $a-b$ for $x$ and $a^{3}-b^{3}$ for the $q$ on the right-hand side. Then, $(a-b)^{3}+$ $p(a-b)=a^{3}-b^{3} \Rightarrow p(a-b)=3 a b(a-b) \Rightarrow a b=\frac{p}{3} \Rightarrow a^{3} b^{3}=\frac{p^{3}}{27}$. Substituting $\frac{p^{3}}{27 a^{3}}$ for $b^{3}$ in $a^{3}-b^{3}=q$ gives $a^{3}-\frac{p^{3}}{27 a^{3}}=q \Rightarrow\left(a^{3}\right)^{2}-q a^{3}-\frac{p^{3}}{27}=0 \Rightarrow a^{3}=\frac{q \pm \sqrt{q^{2}-\frac{4 p^{3}}{27}}}{2}=\frac{q}{2} \pm \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}$. Let $a^{3}=\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}$. Then, $b^{3}=a^{3}-q \Rightarrow b^{3}=-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}$. Thus, $x=a-b=$ $\sqrt[3]{\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}-\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}$. Note that there are many different ways to rewrite
this expression. We will give credit to all equivalent expressions.

### 2.3 Tiles and Dominos

6. (a) We can either use no dominos or one domino. There is 1 way to use no dominos, and 2 ways to use one domino because we can put the remaining tile to the left of or to the right of the domino. Therefore, there are 3 ways in total.
(b) We can either use 0,1 , or 2 dominos. There is 1 way to use 0 dominos. If we use 1 domino, then we have 3 ways to position the domino and fill the rest of the empty squares with tiles. If we use 2 dominos, there is only one way because the two dominos fill up the entire rectangle. In total, there are 5 ways.
7. If the last square is occupied by a tile, then we can tile the remaining $n-1$ squares in $f(n-1)$ ways. If the last square is occupied by a domino, then we can tile the remaining $n-2$ squares in $f(n-2)$ ways. Furthermore, we do not overcount or miss any possibilities because every fitting ends in either a tile or a domino. Therefore, $f(n)=f(n-1)+f(n-2)$.
8. Using our recursive definition in the last problem, we get $f(5)=8, f(6)=13, f(7)=21$, $f(8)=34, f(9)=55$, and $f(10)=89$.
9. $f(1)=1$ because, clearly, there is only one way to fill in a $1 \times 1$ rectangle. $f(2)=2$ because $f(3)=f(1)+f(2) \Rightarrow f(2)=f(3)-f(1)=3-1=2$. Therefore, we have that $f(1)=$ $c\left((a+b)^{2}-(a-b)^{2}\right)=4 a b c=1, f(2)=c\left((a+b)^{3}-(a-b)^{3}\right)=b c\left(6 a^{2}+2 b^{2}\right)=2$, and $f(3)=c\left((a+b)^{4}-(a-b)^{4}\right)=8 a b c\left(a^{2}+b^{2}\right)=3$. From here, we know that $a b c=$ $\frac{1}{4}, a \cdot f(2)=a b c\left(6 a^{2}+b^{2}\right)=2 a \Rightarrow \frac{1}{4}\left(6 a^{2}+2 b^{2}\right)=2 a \Rightarrow b^{2}=-3 a^{2}+4 a$, and $f(3)=$ $8 a b c\left(a^{2}+b^{2}\right)=2\left(a^{2}+b^{2}\right)=3 \Rightarrow b^{2}=\frac{3}{2}-a^{2}$. Setting $-3 a^{2}+4 a=b^{2}=\frac{3}{2}-a^{2}$ gives $4 a^{2}-8 a+3=(2 a-1)(2 a-3)=0 \Rightarrow a=\frac{1}{2}$ or $\frac{3}{2}$. However, $a^{2}+b^{2}=\frac{3}{2} \Rightarrow a^{2} \leq \frac{3}{2}$, so $a$ must be $\frac{1}{2}$. Then, $b^{2}=\frac{3}{2}-a^{2}=\frac{5}{4} \Rightarrow b=\frac{\sqrt{5}}{2}$ and $c=\frac{1}{4 a b}=\frac{1}{\sqrt{5}}$. Thus, $a=\frac{1}{2}$, $b=\frac{\sqrt{5}}{2}$, and $c=\frac{1}{\sqrt{5}}$.
