3rd Annual Lexington Mathematical Tournament Team Round

Solutions

1 Potpourri

- 1. Answer: 77
 - Solution:
- 2. Answer: 3

Solution: Let a, b, and c be the radii of circles A, B, and C, respectively. Then, a + b = 8, a + c = 10, and b + c = 12. Solving gives a = 3, b = 5, and c = 7.

3. Answer: 31

Solution: Solving $\frac{1}{x} + \frac{2}{2y+1} = \frac{1}{y}$ for x, we get $\frac{1}{x} = \frac{1}{y} - \frac{2}{2y+1} = \frac{2y+1}{y(2y+1)} - \frac{2y}{y(2y+1)} = \frac{1}{2y^2+1} \Rightarrow x = 2y^2 + 1$. Since x < 2012, $2y^2 + 1 < 2012 \Rightarrow y^2 < 1005.5$. There are 31 square numbers y^2 that satisfy this inequality, so there are 31 possible values of x.

4. Answer: $\begin{vmatrix} -1 & \text{and} & 19 \end{vmatrix}$

Solution: We have that |8-2x| = 11+x. If $8-2x \ge 0 \Rightarrow x \le 4$, then $8-2x = 11+x \Rightarrow x = -1$. If $8-2x < 0 \Rightarrow x > 4$, then $-(8-2x) = 11+x \Rightarrow x = 19$. Therefore, the two solutions are x = -1 and x = 19.

5. Answer: $-\frac{4}{9}$

Solution: The line with slope 4 intersects the x-axis at (2, 0). Let the other line intersect the y-axis at (0, k). Then, by dividing the left-most region by cutting it at the line y = 4, we see that the area of the region is the sum of the area of a trapezoid, which is 10, and the area of a triangle, which is $\frac{3}{2}(k-4)$. The area of this region must equal $\frac{1}{4}$ of that of the entire region, or $\frac{1}{4} \cdot 48 = 12$. Therefore, we have $10 + \frac{3}{2}(k-4) = 12 \Rightarrow k = \frac{16}{3}$. Finally, from the points $(0, \frac{16}{3})$ and (3, 4), we find that the slope of the line is $\frac{4-16/3}{3-0} = -\frac{4}{9}$.

6. Answer: 10

Solution: The sum of the angles of a polygon with n sides is $(n-2) \cdot 180$. Since the sum of the angles of the polygon is composed of nonzero multiples of 138 and 150, we have $138n < (n-2) \cdot 180 < 150n$. Solving this inequality, we get $\frac{60}{7} < n < 12$. Let there be x angles of degree 138. Then, we have $138x + 150(n-x) \equiv 0 \pmod{180} \Rightarrow 23x + 25(n-x) = 25n - 2x \equiv 0 \pmod{30}$. It follows that n must be even. Thus, the only possible value for n is 10. (The polygon has five of each angle.)

7. Answer: 514.5

Solution: Since $LMT \geq 100$, $MATH \leq 1912$, which means that M must be 1. Then we express the sum in terms of the digits: $1000M + 100A + 10T + H + 100L + 10M + T = 1010 + 100A + 100L + 10T + H = 2012 \Rightarrow 100(A + L) + 11T + H = 1002$. Taking this mod 100 gives $11T + H \equiv 2 \pmod{100}$. Since $0 \leq 11T + H \leq 11(99) + (9) = 108$, 11T + H can either be 2 or 102. If 11T + H = 2, then T = 0 and A + L = 10, so the possible values of LMT are 110, 210, 310, ..., 910. If 11T + H = 102, when T = 9 and A + L = 9, so the possible values of LMT are 119, 219, 319, ..., 919. These values have an average of 514.5.

8. Answer: 2

Solution: Let O be the center and X and Y be two points on side S of the larger square. For X and Y to be vertices of the two smaller squares, we must have OX and OY be half the length of the diagonals of the smaller squares, or $\frac{1}{2} \cdot \sqrt{7} \cdot \sqrt{2} = \frac{\sqrt{14}}{2}$. Let the perpendicular from O to side S intersect S at P. Then, $OP = \frac{\sqrt{10}}{2}$. By the Pythagorean theorem, $OP^2 + PX^2 = OX^2 \Rightarrow PX = \sqrt{OX^2 - OP^2} = \sqrt{(\frac{\sqrt{14}}{2})^2 - (\frac{\sqrt{10}}{2})^2} = 1$. Similarly, $OP^2 + PY^2 = OY^2 \Rightarrow PY = 1$. Thus, the distance between X and Y is PX + PY = 2.

9. Answer: 120127

Solution: There is only one four-digit number with a substring of 2012. For five-digit numbers, we can either place the remaining digit ahead of or behind 2012. We have 9 choices for placing a digit ahead and 10 for behind. This makes 20 numbers so far. Then, we list the ten smallest six-digit numbers: 102012, 112012, 120120, 120121, 120122, 120123, 120124, 120125, 120126, 120127. Therefore, the 30th number in the sequence is 120127.

10. Answer: 2101

Solution: Let a, b, and c be the number of times the terms x, \sqrt{x} , and $\sqrt[3]{x}$ are used, respectively. Then, we look for the solutions of a + b + c = 10 and $a + \frac{b}{2} + \frac{c}{3} = 5$. Substituting 10 - b - c for a in the second equation gives $10 - b - c + \frac{b}{2} + \frac{c}{3} = 5 \Rightarrow 3b + 4c = 30$. Taking this equation mod 3 gives $c \equiv 0 \pmod{3}$. If c = 0, then b = 10 and a = 0. If c = 3, then b = 6 and a = 1. If c = 6, then b = 2 and a = 2. The number of ways to choose a x terms, $b \sqrt{x}$ terms, and $c \sqrt[3]{x}$ terms from ten expressions of $x + \sqrt{x} + \sqrt[3]{x}$ is $\binom{10}{10-a}\binom{10-a}{b}$. Therefore, there are $\binom{10}{0}\binom{10}{10} + \binom{10}{1}\binom{9}{6} + \binom{10}{2}\binom{8}{2} = 2101$ possible ways.

2 Long Answer

2.1 The 7 Divisibility Rule

- 1. Let $d \mid N$ denote that N is divisible by d. Let $N \equiv 10m + n \equiv r \pmod{7}$ where n is a singledigit integer. After applying the divisibility rule, we get $m - 2n \equiv 10(m - 2n) = 10m - 20n = N - 21n \equiv N \pmod{7}$ because 10 and 7 are relatively prime and because 7 | 21n. Since the two integers always have the same residue mod 7, 7 | N if and only if 7 | N - 21n.
- 2. Let $N = 10m + n \equiv r \pmod{d}$ where *n* is a single-digit integer. After applying the rule, we get $m kn \equiv 10(m kn) = 10m 10kn = N (10k + 1)n \pmod{d}$ because 10 and *d* are relatively prime. Since $d \mid N \Rightarrow d \mid N (10k + 1)n$, we must have $d \mid (10k + 1)n$. Since *n* can be any digit, letting n = 1 gives $d \mid (10k + 1)$. Therefore, *k* must satisfy $d \mid (10k + 1)$. Now we show that such a *k* works. Let $N = 10m + n \equiv r \pmod{d}$ where *n* is a single-digit integer. After applying the divisibility rule, we get $m kn \equiv 10(m kn) = N (10k + 1)n \equiv N \pmod{d}$ because $d \mid (10k + 1)n$. Since the two integers always have the same residue mod $d, d \mid N$ if and only if $d \mid N (10k + 1)n$.
 - (a) We find that k = 1 is the smallest value of k for which $11 \mid 10k + 1$. Therefore, k = 1.
 - (b) We find that k = 5 is the smallest value of k for which 17 | 10k + 1. Therefore, k = 5 |

2.2 Solving Cubic Equations

- 3. Substituting a b for x and $a^3 b^3$ for the 12 on the right-hand side gives $(a b)^3 + 12(a b) = a^3 b^3 \Rightarrow a^3 3a^2b + 3ab^2 b^3 + 12(a b) = a^3 b^3 \Rightarrow 12(a b) = 3ab(a b) \Rightarrow ab = 4$ (since $a b \neq 0$).
- 4. We have that $ab = 4 \Rightarrow a^3b^3 = 64$ and that $a^3 b^3 = 12$. Substituting $\frac{64}{a^3}$ for b^3 in the second equation gives $a^3 \frac{64}{a^3} = 12 \Rightarrow (a^3)^2 12a^3 64 = 0$. This equation is a quadratic in terms of a^3 and factors to $(a^3 + 4)(a^3 16) = 0 \Rightarrow a = -\sqrt[3]{3}$ or $\sqrt[3]{16}$. Since we need to only find one solution, let $a = \sqrt[3]{16}$. (It turns out that if we let $a = -\sqrt[3]{3}$, we will get the same value of x, just in a slightly different form. In fact, the cubic equation only has one real solution.) Then, $b^3 = a^3 12 = 4 \Rightarrow b = \sqrt[3]{4}$. Thus, $x = \sqrt[3]{16} \sqrt[3]{4} = 2\sqrt[3]{2} \sqrt[3]{4}$.
- 5. Again, we substitute a b for x and $a^3 b^3$ for the q on the right-hand side. Then, $(a b)^3 + p(a b) = a^3 b^3 \Rightarrow p(a b) = 3ab(a b) \Rightarrow ab = \frac{p}{3} \Rightarrow a^3b^3 = \frac{p^3}{27}$. Substituting $\frac{p^3}{27a^3}$ for b^3 in $a^3 b^3 = q$ gives $a^3 \frac{p^3}{27a^3} = q \Rightarrow (a^3)^2 qa^3 \frac{p^3}{27} = 0 \Rightarrow a^3 = \frac{q \pm \sqrt{q^2 \frac{4p^3}{27}}}{2} = \frac{q}{2} \pm \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$. Let $a^3 = \frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$. Then, $b^3 = a^3 q \Rightarrow b^3 = -\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$. Thus, $x = a b = \sqrt[3]{\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} \sqrt[3]{\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}$. Note that there are many different ways to rewrite this expression. We will give credit to all equivalent expressions.

2.3 Tiles and Dominos

- 6. (a) We can either use no dominos or one domino. There is 1 way to use no dominos, and 2 ways to use one domino because we can put the remaining tile to the left of or to the right of the domino. Therefore, there are 3 ways in total.
 - (b) We can either use 0, 1, or 2 dominos. There is 1 way to use 0 dominos. If we use 1 domino, then we have 3 ways to position the domino and fill the rest of the empty squares with tiles. If we use 2 dominos, there is only one way because the two dominos fill up the entire rectangle. In total, there are 5 ways.

- 7. If the last square is occupied by a tile, then we can tile the remaining n-1 squares in f(n-1) ways. If the last square is occupied by a domino, then we can tile the remaining n-2 squares in f(n-2) ways. Furthermore, we do not overcount or miss any possibilities because every fitting ends in either a tile or a domino. Therefore, f(n) = f(n-1) + f(n-2).
- 8. Using our recursive definition in the last problem, we get f(5) = 8, f(6) = 13, f(7) = 21, f(8) = 34, f(9) = 55, and $f(10) = \boxed{89}$.
- 9. f(1) = 1 because, clearly, there is only one way to fill in a 1×1 rectangle. f(2) = 2 because $f(3) = f(1) + f(2) \Rightarrow f(2) = f(3) f(1) = 3 1 = 2$. Therefore, we have that $f(1) = c((a + b)^2 (a b)^2) = 4abc = 1$, $f(2) = c((a + b)^3 (a b)^3) = bc(6a^2 + 2b^2) = 2$, and $f(3) = c((a + b)^4 (a b)^4) = 8abc(a^2 + b^2) = 3$. From here, we know that $abc = \frac{1}{4}$, $a \cdot f(2) = abc(6a^2 + b^2) = 2a \Rightarrow \frac{1}{4}(6a^2 + 2b^2) = 2a \Rightarrow b^2 = -3a^2 + 4a$, and $f(3) = 8abc(a^2 + b^2) = 2(a^2 + b^2) = 3 \Rightarrow b^2 = \frac{3}{2} a^2$. Setting $-3a^2 + 4a = b^2 = \frac{3}{2} a^2$ gives $4a^2 8a + 3 = (2a 1)(2a 3) = 0 \Rightarrow a = \frac{1}{2}$ or $\frac{3}{2}$. However, $a^2 + b^2 = \frac{3}{2} \Rightarrow a^2 \leq \frac{3}{2}$, so a must be $\frac{1}{2}$. Then, $b^2 = \frac{3}{2} a^2 = \frac{5}{4} \Rightarrow b = \frac{\sqrt{5}}{2}$ and $c = \frac{1}{4ab} = \frac{1}{\sqrt{5}}$. Thus, $\boxed{a = \frac{1}{2}}, \boxed{b = \frac{\sqrt{5}}{2}}$, and

$$c = \frac{1}{\sqrt{5}}$$