2nd Annual Lexington Mathematical Tournament Individual Round

Solutions

1. Answer: $1 / 2011$

The only even prime number is 2 . Since this is among the first 2011 primes, the probability of picking it is $1 / 2011$.
2. Answer: 11

Let H be Hansol's score and J be Julia's score; we wish to find J. We are given that

$$
\begin{aligned}
& J=2 H+1 \\
& J=H+6 .
\end{aligned}
$$

Solving, we find that $2 H+1=H+6 \Rightarrow H=5 \Rightarrow J=11$.
3. Answer: $\sqrt{5}$

In naming the square, the vertices are stated in order, so the positions of A, B, C, D are essentially fixed as shown below.

We can see that $C D=1, B C=1+1=2$, and thus by the Pythagorean theorem, $B D=$ $\sqrt{1^{2}+2^{2}}=\sqrt{5}$.
4. Answer: 0

For each positive integer n, n and $-n$ are the two integers of distance n away from 0 . Thus, including 0 , there are $2 n+1$ integers that are up to distance n from 0 . We want to find the sum of the 2011 integers closest to 0 , so $2 n+1=2011 \Rightarrow n=1005$. The sum we are looking for is thus

$$
-1005+(-1004)+(-1003)+\cdots+(-1)+0+1+\cdots+1004+1005
$$

We can pair up the terms as

$$
\begin{aligned}
(-1005+1005)+(-1004+1004)+\cdots+(-2+2)+(-1+1)+0 & =0+0+\cdots+0+0 \\
& =0
\end{aligned}
$$

5. Answer: 252

From the information given, each screw costs 0.2 cents, so we can certainly buy $50 / 0.5=250$ screws and pay 50 cents. At this point, we add individual screws until the price rounds up to 51 cents. When we add 2 more screws, we have a price of 50.4 which rounds to 50 , but adding 3 screws gets us 50.6 which rounds to 51 , so we can have at most $250+2=252$ screws.
6. Answer: 4

For $n=4$,

$$
a_{4}+a_{1}=a_{2}+a_{3} \Rightarrow a_{4}=1+2-1=2
$$

We can compute $a_{5}=2+2-1=3, a_{6}=2+3-2=3, a_{7}=3+3-2=4$ similarly.
Note: It can be shown that $a_{2 n-1}=a_{2 n}=n$ for all positive integers n.
7. Answer: 5

Let h_{c} be the length of the altitude to $\overline{A B}$ and let h_{a} be the length of the altitude to $\overline{B C}$. If A is the area of the triangle, then

$$
A=\frac{1}{2}(A B) h_{c}=\frac{1}{2}(B C) h_{a} \Rightarrow(A B) h_{c}=(B C) h_{a}
$$

We know $A B=8, B C=10$, and $h_{a}=4$, so $8 h_{c}=10(4) \Rightarrow h_{c}$.
8. Answer: 270

We need to pick two of the five souls that will be the ones that came in through the same entrance, which can be done in $\binom{5}{2}=\frac{5 \cdot 4}{2}=10$ ways. Then, for the other three souls, there are 3 entrances that each of them could have gone through (every entrance except for the one you came in through), contributing a factor of $3^{3}=27$. Overall, there are $10 \times 27=270$ ways exactly two souls could have come in through the same entrance as you.
9. Answer: $1 / 3$

Consider parallelogram $A E F B$ and suppose the area is equal to $U, E F=b$, and the height to $\overline{E F}$ is h. Thus, $U=b h$. Since $A B C D$ is a rhombus, G bisects $\overline{E F}$ and so triangle $A E G$ has the same height h and half the base of parallelogram $A E F B$. Therefore, the area of $A E G$ is equal to $\frac{1}{2} h(b / 2)=U / 4$. Since parallelogram $A E F B$ is made up of triangle $A E G$ and quadrilateral $A G F B$, the area of $A G F B$ is $3 U / 4$. The desired ratio is thus $1 / 3$ or $1: 3$.
10. Answer: 54

For the number to be divisible by 9 , the sum of its digits must be divisible by 9 . The minimum possible value for the sum is $7 \times 7=49$, and the maximum possible value is $7 \times 8=56$. The only multiple of 9 in between the two is 54 .
11. Answer: 35

The angles in a quadrilateral adds up 360°, so

$$
m \angle A+m \angle A B C+m \angle C+m \angle C D A=360^{\circ} .
$$

From the angles given, we find that

$$
m \angle A B C+m \angle C D A=360^{\circ}-40^{\circ}-130^{\circ}=190^{\circ}
$$

We are given that $m \angle C D A-m \angle A B C=20^{\circ}$, so adding the equations,

$$
2 m \angle C D A=210^{\circ} \Rightarrow m \angle C D A=105^{\circ}
$$

We wish to find $m \angle C D B=m \angle C D A-m \angle A D B=105^{\circ}-m \angle A D B$. Since $A B=A D$, triangle $B A D$ is isosceles and

$$
\angle A D B=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}
$$

Thus, $\angle C D B=105^{\circ}-70^{\circ}=35^{\circ}$.
12. Answer: 6

Regardless of the outcome of any single match, a total of 2 points are awarded. To set up a match, we must pick 2 players out of 7 , which can happen in $\binom{7}{2}=21$ ways. Since each player plays every other player exactly once, there are 21 matches and a total of $2 \times 21=42$ points among the players. Thus, the average number of points per player is $42 / 7=6$.
13. Answer: 53

Clearly, the smallest positive integer that leaves a remainder of 3 when divided by 5 is 3 . To generate all positive integers, we add multiples of 5 . Since we want to find values that also leave a remainder of 4 when divided by 7 , we keep adding 5 's until we get such a value. The first positive integer we find that has a remainder of 3 when divided by 5 and a remainder of 4 when divided by 7 is 18 . To preserve the remainder when dividing by 5 , we must add multiples of 5 , while to preserve the remainder when dividing by 7 , we must add multiples of 7 . Thus, in order to preserve both, we must add multiples of $\operatorname{lcm}(5,7)=35$. The smallest positive integer with both remainder conditions satisfied is 18 , so the second smallest is $18+35=53$.

For a slightly more general approach, let n be a positive integer that leaves a remainder of 3 when divided by 5 and a remainder of 4 when divided by 7 . Then, for some nonnegative integers a and b,

$$
n=5 a+3=7 b+4
$$

Considering this equation modulo 5 ,

$$
3 \equiv 2 b-1 \Rightarrow b \equiv 2 \quad(\bmod 5)
$$

so $b=5 c+2$ for some nonnegative integer c. Substituting, $n=7(5 c+2)+4=35 c+18$. The smallest positive integer n that satisfies this is then $35(0)+18=18$ and the second smallest is $35(1)+18=53$.
14. Answer: 1880

L	E	E	T
+	L	M	T
T	0	0	L

From the thousands digit, we know that either $L=T$ or $L+1=T$. From the units digit, we know that $2 T$ has the same units digit as L. Thus, if $L=T, 2 L$ has the same units digit as L, and it can be seen that $L=0$, which is forbidden, so $L+1=T$. With this constraint, we find that $T=9$ and $L=8$.

$$
\begin{array}{cccc}
1 & & 1 & \\
8 & \mathrm{E} & \mathrm{E} & 9 \\
+ & 8 & \mathrm{M} & 9 \\
\hline 9 & 0 & 0 & 8
\end{array}
$$

For the tens digit, $1+E+M$ has a units digit of 0 , and thus $1+E+M=10 \Rightarrow E+M=9$. In addition, there is a carry into the hundreds digit since $1+E+M \geq 10$. Looking at the hundreds digit, $1+E+L=10 \Rightarrow E=10-1-8=1$. Thus $M=9-1=8$.

1	1	1	
8	1	1	9
+	8	8	9
9	0	0	8

Answering the question, the value of the four-digit number ELMO is 1880 .
15. Answer: 72

By definition,

$$
\begin{aligned}
11! & =1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \\
& =2^{1} \cdot 3^{1} \cdot 2^{2} \cdot 5^{1} \cdot 2^{1} \cdot 3^{1} \cdot 7^{1} \cdot 2^{3} \cdot 3^{2} \cdot 2^{1} \cdot 5^{1} \cdot 11^{1} \\
& =2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{1} \cdot 11^{1} .
\end{aligned}
$$

Thus, we have

$$
\begin{array}{r}
20 \cdot n^{2} \mid 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{1} \cdot 11^{1} \\
n^{2} \mid 2^{6} \cdot 3^{4} \cdot 5^{1} \cdot 7^{1} \cdot 11^{1}
\end{array}
$$

Since n clearly cannot contain any other prime factor, if we let $n=2^{a} 3^{b} 5^{c} 7^{e} 11^{f}$, then we have

$$
\begin{aligned}
2 a \leq 6 & \Rightarrow \max a=3 \\
2 b \leq 4 & \Rightarrow \max b=2 \\
2 c \leq 1 & \Rightarrow \max c=0 \\
2 d \leq 1 & \Rightarrow \max d=0 \\
2 e \leq 1 & \Rightarrow \max e=0 .
\end{aligned}
$$

The largest value that n can be is then $2^{3} \cdot 3^{2}=72$.
16. Answer: 2

Let S be the common value of the sum of the numbers in each row, column, and long diagonal. Adding up the totals in each row, we get $3 S$. However, since we added up the numbers in all the rows, this sum is equal to the sum of all the numbers used, so

$$
3 S=11+12+13+\cdots+18+19=9(11+19) / 2=135 \Rightarrow S=45
$$

Looking at the long diagonal containing 18 and 15 , since the sum of the three numbers is 45 , the last number is $45-18-15=12$.

		18
	15	
12		

Now, suppose the number in the bottom right is a. The number in row 2 , column 3 must then be $45-18-a=27-a$. Since we are using integers from 11 to 19 inclusive, $11 \leq 27-a \leq$ $19 \Rightarrow 8 \leq a \leq 16$. Similarly, the number in row 3 , column 2 must be $45-12-a=33-a$. By the same restrictions, $11 \leq 33-a \leq 19 \Rightarrow 14 \leq a \leq 21$, so $14 \leq a \leq 16$ when we combine the two inequalities. Since 15 has already been used, we can only possibly have $a=14$ or $a=16$. Testing both of these finds that we have 2 possible magic squares, shown below.

16	11	18				
17	15	13				
12	19	14		14	13	18
:---	:---	:---				
19	15	11				
12	17	16				

17. Answer: 72

Using the Pythagorean theorem, we have $15^{2}+20^{2}=(B C)^{2} \Rightarrow B C=25$. Since $A D$ is the height from $B C$, we know that

$$
\begin{aligned}
\text { Area }=\frac{A D \cdot B C}{2} & =\frac{A B \cdot A C}{2} \\
\frac{25 \cdot A D}{2} & =\frac{15 \cdot 20}{2} \\
A D & =12
\end{aligned}
$$

Again by the Pythagorean theorem, we have $C D=\sqrt{20^{2}-12^{2}}=16$. The area of triangle $A C D$ is thus

$$
\begin{aligned}
\frac{A D \cdot D C}{2} & =\frac{12 \cdot 16}{2} \\
& =96
\end{aligned}
$$

Since $\triangle E C F$ and $\triangle A C D$ share $\angle C$ and a right angle at F and D, they are similar and oriented the same way. Because E is the midpoint of $\overline{A C}$, the dimensions of $E C F$ are half of the dimensions of $A C D$, so the area of triangle $E C F$ is $\left(\frac{1}{2}\right)^{2} \cdot 96=24$. The area of $A D F E$ is then $[A C D]-[E C F]=96-24=72$, where the square brackets denotes area.
18. Answer: 49

Since $2 x+1$ and $2 y+1$ are both squares, they must be an odd square under $2 \cdot 15+1=31$. Thus, $2 x+1$ and $2 y+1$ can equal 9 or 25 , corresponding to x or y values of 4 or 12 . (if one of them was equal to 1 , then one of x or y would be 0 , which is not positive). Since x and y are distinct, they must be equal to 4 and 12 in some order. In addition, when this is the case, $x y+1=49$ is a perfect square, so the value we seek is 49 .
19. Answer: 282

We first consider the unit digits of the three factors and the product. Since the product has a units digit of 8 , none of the factors can have a 0 in the units digit spot, so the unit digits must be $2,4,6$ or $4,6,8$. Multiplying this out, $2 \times 4 \times 6=48$ has a units digit of 8 and $4 \times 6 \times 8=192$ has a units digit of 2 , so only $2,4,6$ can be the units digits of the three factors. We then note that the factors are all relatively close to each other, so the product should be close to a perfect cube. We see that $100^{3}=1000000$ and $90^{3}=72900$, so the only possible factors are 92,94 , and 96 . Multiplying these out we see that the product is equal to 830208 , so they satisfy the requirements. The sum of these numbers is 282 .
20. Answer: $420 / 17$

We draw radius $\overline{O G}$ such that G is the point of tangency with circle O with line segment $\overline{E F}$. We see that $O B F G$ is a square, as it has 90 degree angles and $O B=O G$. Since $O G=5$,

$$
B F=5 \Rightarrow F C=12-5=7
$$

Now, let $A E=x$, so $E G=x$ as well since they are tangents to the circle from the same point. We also know that $F G=5$ since $O B=5$. Thus, $E C=12-x$ and $E F=5+x$. By the Pythagorean Theorem,

$$
\begin{aligned}
E F^{2}+F C^{2} & =E C^{2} \\
(5+x)^{2}+7^{2} & =(12-x)^{2} \\
x^{2}+10 x+25+49 & =x^{2}-24 x+144 \\
x & =\frac{35}{17} .
\end{aligned}
$$

$E F$ is thus equal to $\frac{35}{17}+5=\frac{120}{17}$. Since triangle $E F C$ is right, its area is $\frac{120}{17} \cdot 7 \cdot \frac{1}{2}=\frac{420}{17}$.

